Package: vip 0.4.1

Brandon M. Greenwell

vip: Variable Importance Plots

A general framework for constructing variable importance plots from various types of machine learning models in R. Aside from some standard model- specific variable importance measures, this package also provides model- agnostic approaches that can be applied to any supervised learning algorithm. These include 1) an efficient permutation-based variable importance measure, 2) variable importance based on Shapley values (Strumbelj and Kononenko, 2014) <doi:10.1007/s10115-013-0679-x>, and 3) the variance-based approach described in Greenwell et al. (2018) <arxiv:1805.04755>. A variance-based method for quantifying the relative strength of interaction effects is also included (see the previous reference for details).

Authors:Brandon M. Greenwell [aut, cre], Brad Boehmke [aut]

vip_0.4.1.tar.gz
vip_0.4.1.zip(r-4.5)vip_0.4.1.zip(r-4.4)vip_0.4.1.zip(r-4.3)
vip_0.4.1.tgz(r-4.4-any)vip_0.4.1.tgz(r-4.3-any)
vip_0.4.1.tar.gz(r-4.5-noble)vip_0.4.1.tar.gz(r-4.4-noble)
vip_0.4.1.tgz(r-4.4-emscripten)vip_0.4.1.tgz(r-4.3-emscripten)
vip.pdf |vip.html
vip/json (API)
NEWS

# Install 'vip' in R:
install.packages('vip', repos = c('https://koalaverse.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/koalaverse/vip/issues

Datasets:

On CRAN:

interaction-effectmachine-learningpartial-dependence-plotsupervised-learning-algorithmsvariable-importancevariable-importance-plots

11.70 score 186 stars 7 packages 3.2k scripts 8.0k downloads 2 mentions 8 exports 36 dependencies

Last updated 1 years agofrom:648106b834. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-winNOTENov 10 2024
R-4.5-linuxNOTENov 10 2024
R-4.4-winNOTENov 10 2024
R-4.4-macNOTENov 10 2024
R-4.3-winOKNov 10 2024
R-4.3-macOKNov 10 2024

Exports:gen_friedmanlist_metricsvivi_firmvi_modelvi_permutevi_shapvip

Dependencies:clicodetoolscolorspacedplyrfansifarverforeachgenericsggplot2gluegtablehardhatisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithryardstick

Variable Importance Plots—An Introduction to the vip Package

Rendered fromvip.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2023-08-18
Started: 2018-06-20

Readme and manuals

Help Manual

Help pageTopics
Friedman benchmark datagen_friedman
List metricslist_metrics
Survival of Titanic passengerstitanic
Survival of Titanic passengerstitanic_mice
Variable importancevi vi.default
Variance-based variable importancevi_firm vi_firm.default
Model-specific variable importancevi_model vi_model.C5.0 vi_model.cforest vi_model.constparty vi_model.cubist vi_model.cv.glmnet vi_model.default vi_model.earth vi_model.gbm vi_model.glmnet vi_model.H2OBinomialModel vi_model.H2OMultinomialModel vi_model.H2ORegressionModel vi_model.Learner vi_model.lgb.Booster vi_model.lm vi_model.mixo_pls vi_model.mixo_spls vi_model.mlp vi_model.ml_model_decision_tree_classification vi_model.ml_model_decision_tree_regression vi_model.ml_model_gbt_classification vi_model.ml_model_gbt_regression vi_model.ml_model_generalized_linear_regression vi_model.ml_model_linear_regression vi_model.ml_model_random_forest_classification vi_model.ml_model_random_forest_regression vi_model.model_fit vi_model.mvr vi_model.nn vi_model.nnet vi_model.RandomForest vi_model.randomForest vi_model.ranger vi_model.rpart vi_model.train vi_model.workflow vi_model.WrappedModel vi_model.xgb.Booster
Permutation-based variable importancevi_permute vi_permute.default
SHAP-based variable importancevi_shap vi_shap.default
Variable importance plotsvip vip.default vip.Learner vip.model_fit vip.workflow vip.WrappedModel